I am a master's student in biomedical engineering at the University of los Andes in Bogota, Colombia. I received my Bachelor's degree in biomédical engineering with a double minor in Bioinformatics and Computational Mathematics. Additionally, I work as a graduate research assistant in computer vision at my university's CinfonIA research center under Pablo Arbeláez's supervision. I've worked on several research projects focused on deep learning and computer vision for medical and natural images. My main research interests are video analysis, biomedical image processing, and vision & language.
City: Bogotá D.C., Colombia
Zip Code: 110121
Telephone: +57 318-391-8489
E-mail: n.ayobi@uniandes.edu.co
Panoptic Narrative Grounding. Cristina González, Nicolás Ayobi, Isabela Hernández,
José Hernández, Jordi Pont-Tuset, Pablo Arbeláez. Oral Presentation at the International Conference of Computer Vision (ICCV) 2021.
[Project Page]
[Paper]
[Code]
[Data]
This paper proposes Panoptic Narrative Grounding, a spatially fine and general formulation of the natural language visual grounding problem. We establish an experimental framework for the study of this new task, including new ground truth and metrics, and we propose a strong baseline method to serve as stepping stone for future work. We exploit the intrinsic semantic richness in an image by including panoptic categories, and we approach visual grounding at a fine-grained level by using segmentations. In terms of ground truth, we propose an algorithm to automatically transfer Localized Narratives annotations to specific regions in the panoptic segmentations of the MS COCO dataset. To guarantee the quality of our annotations, we take advantage of the semantic structure contained in WordNet to exclusively incorporate noun phrases that are grounded to a meaningfully related panoptic segmentation region. The proposed baseline achieves a performance of 55.4 absolute Average Recall points. This result is a suitable foundation to push the envelope further in the development of methods for Panoptic Narrative Grounding.
MATIS: Masked-Attention Transformers for Surgical Instrument Segmentation. Nicolás Ayobi, Alejandra Pérez-Rondón, Santiago Rodríguez, Pablo Arbeláez. Oral presentation in International Symposium on Biomedical Imaging (ISBI) 2023.
[Paper]
We propose Masked-Attention Transformers for Surgical Instrument Segmentation (MATIS), a two-stage, fully transformer-based method that leverages modern pixel-wise attention mechanisms for instrument segmentation. MATIS exploits the instance-level nature of the task by employing a masked attention module that generates and classifies a set of fine instrument region proposals. Our method incorporates long-term video-level information through video transformers to improve temporal consistency and enhance mask classification. We validate our approach in the two standard public benchmarks, Endovis 2017 and Endovis 2018. Our experiments demonstrate that MATIS’ per-frame baseline outperforms previous state-of-the-art methods and that including our temporal consistency module boosts our model’s performance further.
Towards Holistic Surgical Scene Understanding. Natalia Valderrama, Paola Ruíz, Isabela Hernández, Nicolás Ayobi, Mathilde Verlyk, Jessica Santander, Juan Caicedo, Nicolás Fernández, Pablo Arbeláez. Oral Presentation at the International Conference on Medican Image Computing and Computer Assisted Interventions (MICCAI) 2022. Nominated to best paper award.
[Project Page]
[Paper]
[Code]
[Data]
Most benchmarks for studying surgical interventions focus on a specific challenge instead of leveraging the intrinsic complementarity among different tasks. In this work, we present a new experimental framework towards holistic surgical scene understanding. First, we introduce the Phase, Step, Instrument, and Atomic Visual Action recognition (PSIAVA) Dataset. PSI-AVA includes annotations for both long-term (Phase and Step recognition) and short-term reasoning (Instrument detection and novel Atomic Action recognition) in robot-assisted radical prostatectomy videos. Second, we present Transformers for Action, Phase, Instrument, and steps Recognition (TAPIR) as a strong baseline for surgical scene understanding. TAPIR leverages our dataset’s multi-level annotations as it benefits from the learned representation on the instrument detection task to improve its classification capacity. Our experimental results in both PSI-AVA and other publicly available databases demonstrate the adequacy of our framework to spur future research on holistic surgical scene understanding.
Development of a Movil App for the Preoperative Evaluation of Sinus CT Scan: One Step Towards Artificial Intelligence. Javier Ospina, Cristhian Forigua, Andrés Hernández, Nicolás Ayobi, Tomás Correa, Augusto Peñaranda, Arif Janjua. Oral presentation in Acta de Otorrinolaringología y Cirugía de Cabeza y Cuello 2022.
[Paper]
The recent technology revolution that we have experienced has generated extensive interest in the use of artificial intelligence (AI) in the development of various systems and solutions in medicine. In the field of Otorhinolaryngology, we are seeing the first efforts to take advantage of this flourishing area. Objective: We sought to describe the development process of a mobile app created through a collaborative effort between ENT surgeons and biomedical engineers. This app has the intention to optimize the preoperative evaluation of paranasal sinus tomography (CT) to improve safety and outcomes in Endoscopic Sinus Surgery (ESS). Methods: The development of the app followed the prioritization method for MoSCoW specifications. We used the information collected from surveys of 29 Rhinology experts from different parts of the world, who evaluated anatomical variants on sinus CT scans. Two regression models were used to predict difficulty and risk using statistical learning. Conclusion: Via statistical modelling, we have developed a user-friendly tool that will ideally help surgeons assess the risk and difficulty of ESS based on the pre-operative CT scan of the sinuses. This is an exercise that demonstrates the efficacy of the collaborative efforts between surgeons and engineers to leverage AI tools and promote better solutions for our patients.
November 2021 - December 2021
~ Coursera's Master's Degree in AI by Uniandes
August 2021 - December 2021
~ Introduction to Programming
January 2021 - June 2021
~ Data Structures and Algorithms
August 2020 - June 2021
~ Data Structures
August 2020 - December 2020
~ Image Analysis and Processing
January 2020 - June 2020
~ Biomedical Engineering Foundations for Neurosurgery
Double minor in Computational Mathematics and in Bioinformatics